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Abstract In this study, we consider a semi-desirable facility location problem in a
continuous planar region considering the interaction between the facility and the existing
demand points. A facility can be defined as semi-desirable if it has both undesirable and
desirable effects to the people living in the vicinity. Our aim is to maximize the weighted
distance of the facility from the closest demand point as well as to minimize the service cost
of the facility. The distance between the facility and the demand points is measured with
the rectilinear metric. For the solution of the problem, a three-phase interactive geometrical
branch and bound algorithm is suggested to find the most preferred efficient solution. In the
first two phases, we aim to eliminate the parts of the feasible region the inefficiency of which
can be proved. The third phase has been suggested for an interactive search in the remaining
regions with the involvement of a decision maker (DM). In the third phase, the DM is given
the opportunity to use either an exact or an approximate procedure to carry out the search.
The exact procedure is based on the reference point approach and guarantees to find an effi-
cient point as the most preferred solution. On the other hand, in the approximate procedure,
a hybrid methodology is used to increase the efficiency of the reference point approach. The
approximate procedure can be used when the DM prefers to see locally efficient solutions
so as to save computation time. We demonstrate the performance of the proposed method
through example problems.

Keywords Location · Semi-desirable · Multiobjective decision making · Interactive
approach

1 Introduction

A facility can be defined as semi-desirable (semi-obnoxious) if it has both undesirable and
desirable effects to the people living in the vicinity. Since need for such facilities has been
increasing rapidly, semi-desirable facilities have attracted the attention of many researchers
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during the last decade ([5] for a review of models suggested for semi-desirable facilities).
Semi-desirable facility location problems balance public concerns and environmental require-
ments with the needs of facility planners in a sense that both protection from the facility and
nearness to the facility are valued simultaneously.

There is an ever-growing problem of garbage disposal and location of dump sites. No
one wants to live close to any solid waste disposal area that is often located far from city
centers because of the danger of garbage gases, unpleasant odors and noise. However, keep-
ing the cost of garbage collection low through transportation is one of the most important
factors that municipalities often consider. Power plants and airports are other examples for
semi-desirable facilities.

In this paper, we develop an interactive approach for the location of semi-desirable facil-
ities with the motivation that inclusion of this type of facilities to our lives will continue to
rise. To our knowledge, there are very few studies that aim to find either the set of efficient
solutions for the semi-desirable facility location problem or a solution which optimizes a
linear combination of the objectives. There is no interactive approach that explores the fea-
sible region and find the most preferred location with the guidance of the decision maker
(DM). Interactive approaches require the DM to provide preference information during the
search process and provide information on the available solutions. This enhances the DM’s
understanding about both the problem and his/her preferences.

Searching a large region is not an easy task. If the feasible region can be reduced to those
parts that contain highly preferred solutions, then it may become practical for the DM to use
an interactive search procedure on the efficient frontier of the reduced region. In this paper,
we develop an approach to reduce the feasible region by eliminating the parts the inefficiency
of which can be proved and to search for the most preferred solution in the reduced feasible
region.

Organization of the paper is as follows: In Sect. 2 we review the literature on semi-desir-
able facility location problems. We formulate the problem in Sect. 3 and develop the approach
in Sect. 4. In Sect. 5, we present an interactive geometrical branch and bound method called
Interactive Generalized Big Square Small Square (IGBSSS) method. We describe the imple-
mentation of mixed integer programming models used in IGBSSS in Sect. 6, and demonstrate
the performance of the IGBSSS method through example problems in Sect. 7. Last section
contains concluding remarks and directions for future research.

2 Literature review

Mehrez et al. [12] defined a single facility location problem on a square feasible region with
maximin and minimax objectives using the rectilinear distances. They suggested an algorithm
to find the optimal solution to the weighted maximin–minmax problem. They proved that the
optimal points are either on the intersection points of any two lines forming the equirectilin-
ear distances between any pair of demand points or boundary of the feasible region. Ohsawa
[17] used the same objective functions but defined the problem on a polygon. He developed
a polynomial-time algorithm for generating the analytical expressions of the efficient set and
the tradeoff curve between the conflicting objectives. He characterized the efficient set and
the trade-off curve using nearest and farthest-point Voronoi diagrams.

Romero-Morales et al. [20] developed a global optimization approach with a global objec-
tive function including two cost functions, the first of which is a nonincreasing function of
distances measuring for the social cost of the facility and the second is a nondecreasing func-
tion measuring the transportation cost. These two functions are based on the total distance of
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the facility to all demand points. Their solution algorithm is based on the Big Square Small
Square (BSSS) method suggested by Hansen et al. [8] with an improvement in bounding
scheme. They obtained an upper bound using the lagrangian relaxation of some constraints.

Brimberg and Juel [3] proposed a solution approach to the semi-desirable facility problem
with maximin and minisum objectives. In maximin objective Euclidean distances are used,
whereas in minisum objective distances are assumed to be given by an arbitrary norm. For
finding the efficient set they used two formulations the first of which is a parametric model
where the sum of the weighted distances is minimized subject to constraints ensuring that
the distance from the demand points must exceed some parameter and found the efficient set
by varying the parameter. The second formulation combines the two objective functions and
minimizes their weighted sum.

The maximin–minisum objective pair with rectilinear distance metric first appeared in the
study of Melachrinoudis [14]. His solution method for the nonlinear nonconvex biobjective
problem was based on partitioning the feasible region into n2 subregions where n is the num-
ber of demand points as suggested by Drezner and Wesolowsky [7]. By partitioning, they
eliminate the nonlinearity for each objective and have n2 linear programs (LPs). Melachri-
noudis and Xanthopulos [15] studied the maximin–minisum objective pair with Euclidean
distances. They partitioned the feasible region into Voronoi polygons. The complete trajec-
tory of efficient solutions was obtained by using the Karush–Kuhn–Tucker conditions along
with the geometrical properties of Voronoi diagrams.

In another study, Brimberg and Juel [4] studied the semi-desirable facility problem with
transportation cost function which is the weighted sum of all the distances to the facility, and
the social cost function which is the minisum objective, where Euclidean distance is raised
to a negative power. Their solution approach is based on the minimization of the weighted
sum of the two objective functions. A trajectory of efficient points is defined by a system of
differential equations. Skriver and Andersen [22] studied the same problem as Brimberg and
Juel [4]. They proposed the biobjective adaptation of the BSSS algorithm.

Yapicioglu et al. [24] introduced a new model for the semi-obnoxious problem where
transportation cost is represented with a weighted minisum function and obnoxious effects
of the facility are represented by a distance-based piecewise function. They developed a
heuristic solution approach based on particle swarm optimization.

3 Problem formulation

We define the problem of locating a single semi-desirable facility in a continuous planar
region in the existence of several points representing living areas. We use two objectives to
measure the desirable and undesirable aspects of the facility to be located.

Let N be the number of the existing demand points and bi = (bi
1, bi

2) for i = 1, . . ., N
be the coordinates of existing demand points, where bi ∈ R2. Let S be the feasible region,
which is a convex polygon in R2 defined by k constraints:

S = {
x ∈ R2 : e j x1 + f j x2 ≤ g j for j = 1, . . . , k

}

where e j , f j and g j are constants that define the linear constraints and k is the number of
constraints required to define the convex polygon.

Let L(x) be the minimum weighted distance of x from the demand points, and W (x) be
the total weighted distance between x and all demand points. The first objective function
used to model the undesirable effects is maximin which maximizes the minimum weighted
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distance of the facility from the demand points.

L∗(S) = max
x∈S

L(x) = max
(x1,x2)∈S

{
min

i=1,...,N
θi

(∣
∣
∣x1 − bi

1

∣
∣
∣ +

∣
∣
∣x2 − bi

2

∣
∣
∣
)}

where θi > 0 is the weight associated with the i th demand point that can be defined as a
decreasing function of the population.

The second objective function used to model the desirable effects is minisum which min-
imizes the total weighted distance of the facility from the demand points.

W ∗(S) = min
x∈S

W (x) = min
(x1,x2)∈S

{
N∑

i=1

λi

(∣
∣
∣x1 − bi

1

∣
∣
∣ +

∣
∣
∣x2 − bi

2

∣
∣
∣
)
}

where λi > 0 is the weight associated with the i th demand point which is defined as an
increasing function of the population.

The distances are measured with the rectilinear metric. To model undesirable effects the use
of rectilinear metric can be realistic depending on the application of concern [2,7,13,21,26].
For example, as indicated in [14], the unpleasant effects of a facility generally spread through
rectangular isles in a factory including walls. Although the general trend is the utilization
of euclidean metric to model undesirable effects, we believe that it may not be realistic to
model the undesirable effects like noise and air pollution in the existence of various factors
affecting the spread of such effects like wind, geographical barriers etc. Hence, the solution
complexity caused by this metric may not be worth studying.

To model desirable effects, we measure service cost. For most of the facilities, service
cost generally occurs through transportation cost and travel distance between facilities can
be approximated by the rectilinear distance [14].

The mathematical model (Maximin-l1) for the undesirable facility location problem with
maximin objective has been proposed by Sayin [21].

(Maximin-l1)

L∗ = Max L (1)

sub ject to

L ≤ θi di for i = 1, . . . , N (2)

di = ai
1 + ai

2 for i = 1, . . . , N (3)

ai
j − ui

j = x j − bi
j for i = 1, . . . , N j = 1, 2 (4)

ai
j − oi

j = bi
j − x j for i = 1, . . . , N j = 1, 2 (5)

ui
j ≤ Mti

j for i = 1, . . . , N j = 1, 2 (6)

oi
j ≤ M(1 − t i

j ) for i = 1, . . . , N j = 1, 2 (7)

e j x1 + f j x2 ≤ g j for j = 1, . . . , k (8)

ai, ui, oi ≥ 0 for i = 1, . . . , N

ti ∈ {0, 1} for i = 1, . . . , N

where L is the minimum weighted distance of the facility from the demand points, di is the
rectilinear distance of the facility from the i th demand point; ai

j is the j th component of

di ; ui
j , oi

j are surplus variables associated with the i th demand point in the j th dimension;

t i
j is a binary variable, t i

j = 1 if x j ≤ bi
j , t i

j = 0, otherwise. M is a large number, which can
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be taken as twice of the longer side length of a rectangle that is large enough to contain the
convex polygon determined by the constraint set (8).

The objective of (Maximin-l1) is to maximize the minimum weighted distance of the facil-
ity from the demand points which is found by the constraint set (2). Constraint set (3) ensures
that absolute distance is calculated as di = ai

1 + ai
2 = ∣

∣x1 − bi
1

∣
∣ + ∣

∣x2 − bi
2

∣
∣. Since the

objective is maximization, constraint sets (4)–(7) are used to guarantee one of the following

inequalities holds as an equality: ai
j ≥

(
x j − bi

j

)
and ai

j ≥
(
−x j + bi

j

)
; otherwise the

program would be unbounded. Constraint set (8) defines the feasible region.
We construct a mathematical model with minisum objective as follows:

(Minisum-l1)

W ∗ = MinW (9)

sub ject to

W =
N∑

i=1

λi di for i = 1, . . . , N (10)

di = ai
1 + ai

2 for i = 1, . . . , N (11)

ai
j ≥ x j − bi

j for i = 1, . . . , N j = 1, 2 (12)

ai
j ≥ bi

j − x j for i = 1, . . . , N j = 1, 2 (13)

e j x1 + f j x2 ≤ g j for j = 1, . . . , k

ai ≥ 0 for i = 1, . . . , N

where W is the total weighted distance between the facility and the demand points.
The objective of (Minisum-l1) is to minimize the total weighted distance of the facility

from the demand points which is found by the constraint set (10). Constraint set (11) ensures
that absolute distance is calculated as di = ai

1 + ai
2 = ∣

∣x1 − bi
1

∣
∣ + ∣

∣x2 − bi
2

∣
∣. Constraint sets

(12) and (13) guarantee the calculation of rectilinear distance. Since the objective is mini-
mization, it is guaranteed that one of the constraint sets (12) and (13) holds as an equality.
Thus, there is no need to control those constraints with binary variables. Since in the semi-
desirable facility location problem we consider maximin and minisum objective functions
simultaneously, the following biobjective mathematical model is formulated by combining
models (Maximin-l1) and (Minisum-l1).

(Biob jective-l1)

L∗ = Max L (14)

W ∗ = MinW (15)

sub ject to

W =
N∑

i=1

λi di (16)

L ≤ θi di for i = 1, . . . , N (17)

di = ai
1 + ai

2 for i = 1, . . . , N (18)

ai
j − ui

j = x j − bi
j for i = 1, . . . , N j = 1, 2 (19)

ai
j − oi

j = bi
j − x j for i = 1, . . . , N j = 1, 2 (20)
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ui
j ≤ Mti

j for i = 1, . . . , N j = 1, 2 (21)

oi
j ≤ M(1 − t i

j ) for i = 1, . . . , N j = 1, 2 (22)

e j x1 + f j x2 ≤ g j for j = 1, . . . , k (23)

ai, ui, oi ≥ 0 for i = 1, . . . , N (24)

t i ∈ {0, 1} for i = 1, . . . , N (25)

In multicriteria decision making (MCDM) terminology, x = (x1, x2) is a decision vector.
The vector of objective function values z(x) = (L(x), W (x)) belonging to x is named as an
objective vector. Feasible region, S, containing decision vectors is called the feasible deci-
sion region. It is a subset of the decision space, R2. Feasible objective region is defined as
the image of the feasible decision region in the two objective functions. It is a subset of the
objective space, R2. Throughout the paper, words “feasible region” and “feasible decision
region” will be used interchangeably.

Let Z define the feasible objective region: Z = {
z(x) ∈ R2

∣
∣ z(x) = (L(x), W (x)), x ∈ S

}
.

A criterion vector z(x) is said to be dominated by a criterion vector z(xh) if L(xh) ≥
L(x), W (xh) ≤ W (x) and (L(xh), W (xh)) �= (L(x), W (x)). A criterion vector z(x) is said to
be nondominated if there does not exist another feasible solution xh such that z(xh) dominates
z(x); in this case the feasible solution x is said to be efficient. The set of all efficient solutions
is called the efficient frontier.

Let S′ be a subset of feasible decision region containing x, i.e., x ∈ S′ ⊂ S. A solution x
is locally efficient if and only if there does not exist another feasible solution xh ∈ S′ such
that z(xh) dominates z(x) [1].

Ideal objective vector of region S, R(S), is a point in the objective space, whose compo-
nents are obtained by separately optimising each of the objective functions over region S,
i.e., R1(S) = Maxx∈S {L(x)} , R2(S) = Minx∈S {W (x)}. Nadir objective vector, Q(S), is a
point whose components are obtained by anti-optimizing each of the objective functions in
the efficient frontier of region S, i.e., Q1(S) = Minx∈E {L(x)} , Q2(S) = Maxx∈E {W (x)}
where E represents the set of efficient solutions in S. Since nadir objective vectors are dif-
ficult to obtain in multobjective decision making problems, they are generally estimated by
an approximation obtained from payoff tables [23] (p. 267). However, because the problem
we consider is biobjective, we obtain exact nadir points from the payoff table constructed by
solving Maxx∈S {L(x) − ρW (x)} and Minx∈S {W (x) − ρL(x)} where ρ is a small positive
constant that guarantees the generation of efficient solutions, which can be taken as less than
both 1/R1(S) and 1/Q2(S).

4 Development of the approach

We adapt the new version of the BSSS method, Generalized Big Square Small Square
(GBSSS) method [19] to the semi-desirable facility location problem defined on a con-
vex polygon and we develop a method that explores the feasible region with the guidance of
the DM. The main idea of BSSS and GBSSS is to eliminate some parts of the feasible region
up to a prespecified precision. The elimination occurs when the inefficiency of a region is
proved with the help of bounds. In the proposed method, we suggest an additional phase to
GBSSS, in which we guide the DM in selecting the most preferred location based on her/his
preferences. The aim of this phase is to guide the DM in searching the regions that are not
proved to be inefficient to find the best solution. We propose the use of the reference point
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approach [25], which projects any point in the objective space to the efficient frontier of
the region of concern. Theorem 1 shows how efficient solutions are generated by projecting
solutions onto the efficient frontier.

Theorem 1 [10,25] In a problem where all objectives are to be maximized, a solution z̄ ∈ Z
is nondominated if and only if there exists w0

j > 0 for each j and ρ > 0, such that z̄ solves
the problem (P)

Min
z∈Z

⎡

⎣Max
j

⎛

⎝w0
j (G

0
j − z j ) − ρ

∑

j

z j

⎤

⎦

where G0 is a reference point.

Corollary 1 Given w0
j > 0 for each j and ρ > 0. If G0 is a feasible or an infeasible

solution, optimal solution to (P) is nondominated.

Corollary 2 Let (P1) denote the problem (P) with Z = Z1, and (P2) denote the problem
(P) with Z = Z2. Let z̄1 and z̄2 be the optimal solutions to (P1) and (P2), respectively.
Given a weight vector w0 and a reference point G0, z̄1

j ≤ z̄2
j for all j with a strict inequality

for at least one j if there exists z ∈ Z2 such that z ≥ z̄1 and z �= z̄1.

The model that adapts Wierzbicki’s [25] reference point method to our problem is called
‘Achievement Scalarizing Program’ (ASP). The ASP operates in the objective space and
minimizes the maximum weighted deviation of objectives from the levels specified with a
reference point. The program finds the closest efficient point to the reference point in the
weighted Tchebycheff metric as defined below. The ASP is obtained by replacing objec-
tive functions (14) and (15) with a single objective and adding two constraints to those of
(Biobjective-l1) model.

(AS P)

Min [α − ρ(L − W )] (26)

subject to

α ≥ w0
1

(
G0

1 − L

R1(S)

)

(27)

α ≥ w0
2

(
W − G0

2

Q2(S)

)

(28)

Constraint sets (16)–(25) of (Biobjective-l1)

where G0 is a reference point, α is the maximum deviation of the solution objective vector
from the reference point, w0 = (w0

1, w0
2) is a weight vector and ρ is a small positive constant

that guarantees the generation of efficient solutions, which can be taken as less than both
1/R1(S) and 1/Q2(S).

Minimization of the objective function (26) ensures that a point which minimizes the
maximum deviation from the levels specified with a reference point Go is determined as
the optimal solution. Both objectives are given weights by the DM considering their relative
importance. Constraints (27) and (28) calculate the weighted Tchebycheff distance between
the reference point and the solution vector, which are normalized using highest objective
values (i.e., the ideal value of the maximin objective and the nadir value of the minisum
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objective) [18]. Since normalization with the highest objective values guarantees that dif-
ferences between the reference point and the solution vector in all objectives are within the
[0,1] range, the scale effect on the weights is avoided.

Since ASP is a mixed integer linear programming problem, computation time increases
exponentially as the number of integer variables increases. This makes the ASP inefficient
for large problems. To decrease the solution time, we use the idea suggested by Karaiva-
nova et al. [9] for the solution of multiobjective mixed integer programs. They proposed
the use of a two-phase continuous/integer method. In the first phase, the method operates in
the relaxed continuous space parametrically to find a number of nondominated continuous
solutions iteratively. Once the most preferred continuous solution is determined, the closest
integer solution is found with the help of the ASP. The logic behind this approach is that it
is reasonable to generate nondominated continuous solutions in the early iterations when the
DM is searching regions far from the most preferred solution. However, when approaching
the most preferred region, she/he needs more accuracy.

For the search in the nondominated continuous objective region, we use the reference
direction approach [11]. We first solve the LP relaxation of the ASP to find an initial non-
dominated continuous solution, yo, and then search the nondominated continuous objective
region by a parametric linear program. This method iteratively projects a line segment in
the objective space onto the nondominated surface of the relaxed feasible objective region
using Achievement Scalarizing Parametric Linear Program (ASPLP). ASPLP is obtained by
replacing constraint sets (27) and (28) of ASP with the following constraints and defining t i

as nonnegative variable, i.e. t i ≥ 0 for i = 1, . . . , N .

α ≥ w0
1

(
y0

1 + p�d1 − L

R1(S)

)

(29)

α ≥ w0
2

(
W − (y0

2 + p�d2)

Q2(S)

)

(30)

where y0 is the reference point, �d is the reference direction and p = 1, . . ., P (P is the
desired number of points to be projected onto the efficient frontier in the determined direc-
tion). �d and P are to be determined by the DM.

It should be noted that the continuous solution is very sensitive to the choice of M in
constraint sets (21) and (22). Although, objective function (26) together with the constraint
sets (16) and (28) forces constraints (19) and (20) to measure the rectilinear distance in the
LP relaxation, when the integrality requirements are relaxed, both u and o are free to take
positive values, which directly depend on the value of M . Therefore, value of M should be
set to its possible minimum level.

5 Interactive Generalized Big Square Small Square (IGBSSS) method

In this section, we present the interactive geometrical branch and bound method, called
IGBSSS method, for the solution of a single semi-desirable facility location problem. We
define a region (i.e., either square or rectangle) that is large enough to contain the feasible
region determined by the constraints and with sides parallel to the axis. Our algorithm con-
sists of three phases. In the first two phases of the algorithm, at each branching we cut the
region under consideration into four equal subregions by dividing it with two lines. For each
axis, we find the maximum and minimum values of the region and calculate the midpoint.

123



J Glob Optim (2008) 42:177–199 185

Then we draw parallel lines to the axes passing through the midpoints. If the feasible region
is neither square nor rectangle, some of the generated subregions may not intersect with the
feasible region. We delete such subregions from further consideration. We pick a predeter-
mined number of points from the region under consideration and keep the nondominated
ones as incumbent points. We use them to check the efficiency of the subregions. We reduce
the feasible region by eliminating the inefficient subregions. In the first phase, called rough
cut phase, we use upper bounds on the optimal maximin objective function values, whereas
in the second phase, called precise cut phase, we use the optimal maximin objective function
values. In the last phase, we search the reduced feasible region with the involvement of the
DM.

In our algorithm, we use the best bound search. Every time we look for a region to branch
on, the region with the highest upper bound/optimal maximin objective value or the region
with the lowest optimal minisum objective value is selected to be divided. We consider the
difference from the second highest maximin objective value and the second lowest minisum
objective value. We select the region that has the largest difference. The rationale behind
is that the regions with best bounds are difficult to eliminate with incumbent points; hence
it is reasonable to branch them first. Therefore, by best bound search, priority in branch-
ing is given to the subregions whose elimination is difficult. By doing this, we increase the
chance to eliminate subregions with worse objective values without branching them much.
The algorithm is as follows:

Phase 1: Rough cut phase In this phase, we use upper bound on the optimal maximin
objective function value. However, since (Minisum-l1) is a linear programming problem, we
use the optimal minisum objective function value. If any incumbent point dominates this pair,
i.e. the subregion under consideration is proved to be inefficient, it is discarded from further
consideration.

Upper bounds for the optimal objective function value of (Maximin-l1) are found solving
both (Maximin-l1) with demand points located inside the subregion and the following LP for-
mulation [21]. Smallest upper bound is chosen as the upper bound on the optimal maximin
objective.

U B(Maximin-l1)

L̄∗ = Max L̄
subject to

L̄ ≤
F∑

f =1
µ f θi d(v f, b i) for i = 1, . . . , N

F∑

f =1
µ f = 1

F∑

f =1
µ f v

f
j − x j = 0 for j = 1, 2

e j x1 + f j x2 ≤ g j for j = 1, . . . ., k
µ f ≥ 0 for f = 1, . . . , F

where v f is the f th extreme point of the feasible region, µ f is the weight associated to each
extreme point, θi > 0 is the weight associated with the i th demand point and d(v f, b i) is the
rectilinear distance between v f and b i. If the feasible region is not rectangle, extreme points
of the rectangle containing the feasible region is used instead of the extreme points of the
feasible region in the model UB(Maximin-l1).
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The purpose of this rough phase is to get rid of some subregions that can be eliminated
with the help of an upper bound on the maximin objective since it is time consuming to find
the optimal solution to (Maximin-l1) especially for big samples of demand points.

Branching increases the chance of eliminating subregions because after every division, the
upper bound on the maximin objective value decreases while the optimal minisum objective
increases. At the same time, new incumbent points are selected from the subregions in each
branching. Branching is performed until regions are reduced to a predetermined size.

Phase 2: Precise cut phase In this phase, the optimal maximin objective values are found
by solving (Maximin-l1) for the remaining subregions. Since the demand points, whose short-
est weighted distance to the subregion under consideration is greater than the upper bound
of that subregion on maximin objective, do not affect the optimal solution of (Maximin-l1),
we filter those points before solving (Maximin-l1).

After finding the optimal value of the maximin objective for each subregion, we compare
the ideal objective vectors of the subregions with the incumbent points for any possible fur-
ther elimination. In this phase, we allow the DM to branch the remaining subregions further
with the optimal values. Since the subregions are already divided up to a prespecified side
length in phase 1, branching with optimal values is expected to take reasonable time.

Phase 3: Interactive search phase This phase of the algorithm is the beginning of the
interactive search with the DM. In this part, we develop two procedures; one is exact and the
other is an approximate procedure.

The exact procedure is based on the reference point approach which guarantees to find
an efficient point as the most preferred solution. In this procedure, the remaining subregions
after the first two phases are presented to the DM along with their ideal and nadir objec-
tive vectors. Each time a subregion is selected to be searched, the DM is asked to specify a
weight vector and aspiration levels in both objectives (i.e. reference point) based on her/his
preferences. Then the ASP is solved to project this reference point to the efficient frontier of
the selected subregion with the specified weight vector. The solution found is efficient with
respect to the subregion from which it is generated, but it may be dominated by the solutions
in the other subregions (i.e. it is locally efficient). Therefore, each time a reference point is
projected onto the efficient frontier of the selected subregion, we need to check whether there
exist solutions in the other subregions which dominate the one at hand. For this check, we
again use the idea of the ASP with which the solution at hand is projected onto the efficient
frontier of the other subregions with the same weight vector specifed by the DM. If there is
no solution dominating the one at hand, then the solution is proved to be nondominated (by
Corollary 2). If any dominating solution or locally efficient solution is found, then the DM is
given the chance to pass to the subregion from which it is produced and continue the search
from that subregion. The DM continues to generate solutions in the same manner from the
subregions she/he has selected by identifying new reference points and new weight vectors.
The process is repeated until the DM has identified the most preferred solution.

The approximate procedure is also based on the reference point approach. This procedure
can be used when the DM wants to see locally efficient solutions instead of efficient solutions
in order to save computation time. In this procedure, the interactive search is carried out in the
subregions that the DM selects. The procedure guarantees to find efficient solutions for the
selected subregion (i.e. locally efficient solutions). However, the solution may be inefficient
with respect to the other subregions. Each time a solution is found, it is compared to the other
solutions already generated. Hence, the chance to obtain an inefficient final solution decreases
considerably with these comparisons and the approach finds locally efficient solutions.

In the approximate procedure, the DM is asked to specify aspiration levels in both
objectives (i.e. reference point) and a weight vector, each time a subregion is selected to
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be searched as in the exact method. In the beginning, the LP relaxation of the ASP is solved
which minimizes the maximum deviation from the reference point. This program guarantees
to find a nondominated continuous solution for the subregion under search. With this solution
at hand, we present two ways to the DM. She/he may find the closest integer solution to the
continuous one, or she/he can continue to search for other continuous solutions.

If the latter is selected, the DM is asked to specify a reference direction and continu-
ous nondominated solutions closest to the points on this direction are found by solving the
ASPLP. Once the DM is satisfied with a continuous solution, an integer solution closest to
it is found with the ASP and kept as an objective vector of a candidate location point. This
approach helps the DM to have a better understanding about the efficient frontier.

The details of the algorithm are presented in the Appendix.

6 Implementation of mixed integer programming models

The default MIP strategy settings of CPLEX intend to solve a vast majority of MIP
models with the minimum solution time. However, difficult models which may benefit from
the revision of performance measures of branch and bound algorithm exist [6]. Nadirler and
Karasakal [16] found out that changing the strategies of the branch and bound algorithm
to find better integer solutions with (MIPEMPHASIS = 1), fixing the pricing strategy with
(DPRIIND=1), turning off cut constraints with (CUTS = NO) and branching on maximum
infeasibility (VARSEL = 1) bring considerable improvement to (Maximin-l1).

Since the binary structure of ASP is the same as that of (Maximin-l1), we believe the use
of the suggested strategy combination for (Maximin-l1) will increase the efficiency of the
model. With this idea, we have conducted an experimental study. The feasible region was
defined in R2, which is a 100 × 100 square defined by the constraints 0 ≤ x1 ≤ 100 and
0 ≤ x2 ≤ 100. We conducted three experiments using 1000, 3000 and 5000 demand points
(10 randomly generated problems were solved in each experiment). The locations of the
demand points were generated according to uniform distribution in the interval [0,100]. We
assumed that both objectives were attributed with equal weights. We also assumed that the
demand points have equal weights based on the results of the computational experiments
given in [21] because the solution time of the weighted version of (Maximin-l1) was found to
be shorter compared to the unweighted one (i.e. equal weighted version). The reference point
was assumed to be the ideal point in each problem. The runs were conducted on Pentium IV
personal computer with 256 MB random access memory (RAM). The optimization models
were solved in GAMS Version 20.2. The computer code that calls optimization programs
was written in Borland C++ Builder Version 3. CPLEX Version 7.5 operating under GAMS
Version 20.2 was used as the MIP solver. Table 1 reports the average CPU for each problem
set.

As evident from Table 1, the solution time obtained for different sample sizes decreased
considerably with the strategies as estimated and a great saving is achieved in the solution
time of the ASP with the new branch and bound strategies.

7 Examples

In this section, we present two examples to show the performance of IGBSSS method. The
first one illustrates the approximate procedure of the interactive search phase (Phase 3) on a
small problem. The second one illustrates the exact procedure of Phase 3 on a large problem.
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Table 1 Computational results

CPU Time(s)

Number of demand points Default strategies Proposed strategies % Reduction in CPU time

1000 27.7 10.2 63

3000 164.5 50.5 69

5000 430 129 70

Example 1 Consider a single semi-desirable facility location problem in a 100×100 square.
Suppose there are 6 demand points as given in Table 2 and weights associated with the
demand points are 1 (i.e., λi = 1 and θi = 1 for i = 1, . . . , 6).

We assume that the DM has an underlying concave utility function, which we pretend that
we do not know.

U = −
2∑

j=1

0.5(R j (S) − z j )
2

where U is utility function, R j (S) is the j th coordinate of the ideal objective vector of the
feasible region S and z j is the j th coordinate of an objective vector.

Suppose the DM determines stopping side length for phases 1 and 2 as 12.5 and the
number of feasible points generated from each region as 100.

At the end of phase 1, shaded regions shown in Fig. 1 are eliminated. The list of candidate
efficient subregions (LCES) obtained at the end of phase 1 along with their upper bounds
on the maximin objective and their optimal minisum objective values are given in Table 3.
Table 4 presents the list of incumbent solutions (LIS) and their distance to the closest demand
point, L(xh), and total distance to all demand points, W (xh).

In phase 2, the optimal maximin objective values for each subregion in the LCES (see
Table 5) are found. Subregion 24 is eliminated because it is dominated by an element of LIS,
x8 (see Table 4).

In phase 1, 90.63% of the feasible region, and in phase 2, 16.56% of the reduced feasible
region have been proved to be inefficient and eliminated. At the end of two phases, only
7.84% of the feasible region has been left for further search (see Fig. 2).

In phase 3, subregions 20, 30 and 32 are combined into a single region and 3 regions
are presented to the DM (see Fig. 2). For these regions, optimal locations with respect to
maximin and minisum objectives are presented in Table 6. Table 6 also gives the ideal and
nadir objective vectors of the regions.

Suppose that the DM wants to use the approximate procedure and wants to start the
search from region 1. Assume that the DM specifies G0 = (32, 390) as the reference

Table 2 Demand points

i 1 2 3 4 5 6

b i (50,20) (18,80) (2,16) (75,68) (90,100) (85,10)
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Fig. 1 Reduced feasible region at the end of phase 1

Table 3 List of candidate
efficient solutions at the end of
phase 1

Subregion (n) U B(Sn) W∗(Sn)

12 49.00 412.00

20 42.50 382.00

24 46.44 432.00

30 46.00 382.00

32 40.00 382.00

36 42.00 396.00

Table 4 List of incumbent
solutions at the end of phase 1 Solution (h) xh L(xh) W (xh)

1 [50.00,56.50] 36.50 382.00

2 [48.75,56.25] 37.50 384.50

3 [47.50,56.25] 38.75 387.00

4 [46.25,56.25] 40.00 389.50

5 [45.00,57.50] 40.50 392.00

6 [42.50,56.25] 43.75 397.00

7 [41.25,56.25] 45.00 399.50

8 [40.00,56.50] 46.00 402.00

9 [97.50,43.75] 46.25 467.00

10 [98.75,43.75] 47.50 474.50

11 [100.00,43.75] 48.75 482.00
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Table 5 Elimination in the list
of candidate efficient solutions at
phase 2

Subregion (n) L∗(Sn) W∗(Sn) Status

12 49.00 412.00 Candidate

20 42.50 382.00 Candidate

24 46.00 432.00 Dominated

30 46.00 382.00 Candidate

32 40.00 382.00 Candidate

36 42.00 396.00 Candidate

Fig. 2 Reduced feasible region at the end of phase 2

Table 6 Regions presented to the decision maker in phase 3

Region Constraints Optimal solution Optimal solution Ideal objective Nadir objective
to (Maximin-l1) to (Minisum-l1) vector vector

1 37.5 ≤ x1 ≤ 50 [37.5,53.5] [50,69] [46,382] [26,407]

37.5 ≤ x2 ≤ 75

2 50 ≤ x1 ≤ 62.5 [52.5,87.5] [50,75] [42,396] [32,436]

75 ≤ x2 ≤ 87.5

3 87.5 ≤ x1 ≤ 100 [100,44] [87.5,37.5] [49,412] [30,482]

7.5 ≤ x2 ≤ 50

point and w0 = (0.8, 0.2) as the weight vector. By solving the relaxed version of the
ASP, the first continuous solution is found as z0 = (36.5, 382) with the decision vector
x0 = (50, 56.5).

Suppose that the DM is not sure about the continuous solution and wants to see some
alternative solutions in a direction that leads improvement in both objectives, �d = (3.5, 2),
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with P = 2. The following feasible solutions are generated.

For p = 1, z1 = (39.87, 388.73) x1 = (50, 59.87)

For p = 2, z2 = (43.23, 395.47) x2 = (50, 63.23)

The most preferred continuous vector is K = z1 = (39.87, 388.73). The closest nondominat-
ed integer vector is C1 = (39.87, 388.73) with x = (46.63, 56.5). Since C1 is not dominated
by any vector in the LIS, it is added to the list of candidate location points (LCLP) as a
candidate location point.

Suppose that the DM wants to stop the search with C1 = (39.87, 388.73) as the most
preferred solution. Hence, the semi-desirable facility should be located at x = (46.63, 56.5).
In this case the facility is 39.87 units far from the closest demand point, while it has a total
distance of 388.73 units from all the demand points.

Note that the best solution that maximizes the underlying utility function is L∗ = 39 and
W ∗ = 387 with the decision vector x = (47.5, 56.5) and the utility value U = −62.5, which
is very close to the most preferred solution found by the IGBSSS method in the criterion
space.

Example 2 Consider a single semi-desirable facility location problem in a 100×100 square.
Suppose that there are 2000 demand points uniformly generated in the interval [0,100] and
weights associated with the demand points are 1(i.e., λi = 1 and θi = 1 for i = 1, . . . , 2000).
We assume that the DM has an underlying linear utility function, which we pretend that we
do not know.

U = 0.7

(
R1(S) − z1

R1(S) − Q1(S)

)
+ 0.3

(
R2(S) − z2

R2(S) − Q2(S)

)

U, R j (S) and z j (for j = 1, 2) are as defined in Example 1 and Q j (S) (for j = 1, 2) is the
j th coordinate of the nadir objective vector of the feasible region S.

Suppose the DM determines stopping side length for phase 1 as 12.5, phase 2 as 6.25, and
the number of feasible points generated from each region as 100.

In this example, since the demand points are uniformly generated, function values of
incumbent points are expected to be close to each other. Besides, the upper and lower bounds
on the objective functions are expected to be similar in the regions. Hence, obviously, for any
elimination, the feasible region should be divided more compared to the previous example.
In addition, as a result of the uniformity in the demand points it will be difficult to eliminate
big regions at once. Based on these, the resulting elimination pattern is expected to be more
uniform and slower.

At the end of phase 1, shaded regions shown in Fig. 3 are eliminated.
In phase 2, the optimal maximin objective values for each subregion in the LCES are cal-

culated and 21 subregions are eliminated since they are found to be dominated by solutions
in the LIS.

Remaining subregions are further divided. With this further division, 80 additional sub-
regions are generated. The optimal maximin and minisum objective values for each newly
generated subregion are calculated. At this step, 62 of them are found to be dominated by
the LIS and eliminated. Figure 4 shows the feasible region after the second elimination in
Phase 2. Table 7 shows the percent elimination achieved in two phases. As seen from Fig. 4,
the remaining subregions can be considered as 5 regions. The data related with the regions
are given in Table 8.
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Fig. 3 Reduced feasible region at the end of phase 1

Fig. 4 Reduced feasible region at the end of phase 2

Table 7 Percent elimination
achieved

Phase 1 Phase 2 Overall

First elimination Second elimination

35.94 32.81 24.22 92.97
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Table 8 Regions presented to the decision maker in phase 3

Region Constraints Optimal solution Optimal solution Ideal objective Nadir objective
to (Maximin-l1) to (Minsum-l1) vector vector

1 0 ≤ x1 ≤ 6.25 [0,36.73] [6.25,49.56] [6.09,139669.36] [2.03,154828.16]

31.25 ≤ x2 ≤ 56.25

2 18.75 ≤ x1 ≤ 31.25 [24.9,51.57] [31.25,50] [4.87,107074.02] [1.15,113024.49]

50 ≤ x2 ≤ 56.25

3 43.75 ≤ x1 ≤ 56.25 [51.53,45.89] [51.25,49.56] [3.53,99459.20] [1.31,99758.55]

43.75 ≤ x2 ≤ 62.5

4 56.25 ≤ x1 ≤ 68.75 [62.71,62.61] [56.25,56.25] [4.37,100751.36] [2.46,105298.47]

56.25 ≤ x2 ≤ 68.75

5 93.75 ≤ x1 ≤ 100 [100,36.78] [93.75,43.75] [5.75,138563.86] [0.92, 152962.18]

31.25 ≤ x2 ≤ 43.75

Suppose that the DM wants to search the regions with the exact approach and start the
search from region 1. Assume that the DM specifies G0 = (6.0, 120000) as the reference
point and w0 = (0.9, 0.1) as the weight vector.

The closest nondominated integer vector to Go in region 1 is found as C1 = (5.83,

154341.55) with x = (0.24, 36.72). C1 is not dominated by the LIS, so we project it onto
the other regions by solving ASP to perform dominance check. Following solutions are
generated: C2 = (4.86, 112598.92) from region 2, C3 = (3.52, 99758.95) from region 3,
C4 = (4.36, 105404.36) from region 4, C5 = (5.75, 152962.18) from region 5. These solu-
tions are not dominated by the LIS, thus they are added to the list of candidate nondominated
vectors (LCNV).

As a result, since none of the projections dominates C1, C1 is proved to be nondominated
and added to the LCLP.

Suppose that the DM would like to know whether C2 is nondominated or not. It is
deleted from the LCNV. Let G0 = C2 = (4.86, 112598.92) and w0 = (0.9, 0.1). C2

is projected onto the other regions to perform dominance check. Following solutions are
generated: C6 = (4.70, 149226.73) from region 1, C7 = (3.52, 99758.95) from region
3, C8 = (4.36, 105330.48) from region 4, C9 = (4.70, 150823.45) from region 5. These
solutions are not dominated by the LIS, thus they are added to the LCNV.

As a result, since none of the projections dominates C2, C2 is proved to be nondominated
and added to the LCLP.

Suppose the DM want to stop the search. The LCLP is presented to the DM. The elements
of the LCLP are C1 = (5.83, 154341.55) and C2 = (4.86, 112598.92). The DM would
prefer point C2 based on the assumed underlying utility function. Hence, the semi-desirable
facility should be located in region 2 at x = (25.28, 51.18). In this case the facility is 4.86
units far from the closest demand point, while it has a total distance of 112598.92 units from
all the demand points. Note that the IGBSSS method found the best solution that maximizes
the underlying utility function (U = 0.26).

8 Conclusion

In this study, we addressed a single facility location problem with maximin and minisum
objectives in a continuous planar region where the distances are measured in the rectilinear
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metric. We proposed a three-phase interactive geometrical branch and bound algorithm, called
IGBSS method, for the solution of the problem. In the first two phases, we aim to eliminate the
parts of the feasible region the inefficiency of which can be proved. The third phase has been
suggested for an interactive search in the remaining regions with the involvement of a DM.

In the third phase, the DM is given the opportunity to use either an exact or an approximate
procedure to carry out the search. In the exact one, finding an efficient point at the end is
guaranteed. This procedure is based on the reference point approach of Wierzbicki [25]. On
the other hand, in the approximate procedure, a locally efficient solution can be presented at
the end. In this procedure, a hybrid methodology [9] is used to increase the efficiency of the
reference point approach. In the early iterations, we search the nondominated solutions of
the reduced continuous problem using the reference direction approach suggested by Korho-
nen and Laakso [11]. In later iterations, when approaching the DM’s most preferred region,
we find integer nondominated solutions using the reference point approach. The approxi-
mate procedure can be used when the DM prefers to see locally efficient solutions to save
computation time.

The first two phases of the algorithm was an adaptation of the GBSSS algorithm to the
semi-desirable facility location problem with new bounding schemes. However, the third
phase was completely new considering that there is no interactive approach suggested for
the semi-desirable facility location problem in the literature. The solution approaches in the
literature are either approximations that result in regions containing efficient points, or they
are aimed at obtaining the complete efficient trajectory. Obviously, these approaches may
cause information overload on the DM who may have difficulty in selecting the final location
point. Proposed method gives the DM an opportunity to select a single -efficient or locally
efficient- location point as the most preferred solution.

An area for future research should consider forbidden regions which allow modeling real
location areas with geographical barriers. A new distance gauge that properly defines the
spread of pollution should be investigated. Moreover, different criteria involving environ-
mental considerations, such as geographical, climatic, should be incorporated to the problem
of this area. Another area is the multi-facility version of the problem which will be useful in
modeling the real life location problems.

Appendix

Interactive Generalized Big Square Small Square (IGBSSS) Algorithm

Notation
LCES : List of candidate efficient subregions
LIS : List of incumbent solutions
LCLP : List of candidate location points
LCNV : List of candidate nondominated vectors
SCES : Sublist of candidate efficient subregions
n : Index used to denote the subregion
i : Index used to denote the demand point
r : Largest value of index n
Sn : Subregion n
bi : Demand point i
N : Number of demand points
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θi :Weight associated with the i th demand point, a decreasing function of
the population

λi :Weight associated with the i th demand point, an increasing function
of the population

T : Number of points selected from a subregion in each branching.
L F D P(Sn) : List of filtered demand points for subregion Sn

U B(Sn) : Upper bound on optimal maximin function value in subregion Sn

L∗(Sn) : Optimal maximin function value in subregion Sn

W ∗(Sn) : Optimal minisum function value in subregion Sn

R(Sn) : Ideal objective vector of subregion Sn

Q(Sn) : Nadir objective vector of subregion Sn

d(bi , Sn) : Smallest rectilinear distance between demand point bi /∈ Sn and sub-
region Sn

Phase 1: Rough cut phase: pruning with UB (Maximin-l1) and (Minisum-l1)

Step1.0 Initialization

• Define either a square or a rectangle that is large enough to contain the feasible region and
with sides parallel to the axis and denote it by S0.

• Ask the decision maker (DM) to specify the stopping side length, β (In theory, β can take
on any value; however, we suggest using at least one eight of the longer side length of the
rectangle for β).

• Set m = 0, n = 0, r = 0, L I S = {} and LC E S = {}.
• Put S0 into the LCES

Step1.1 Branching and Pruning

• Let Sm be the selected subregion. Delete Sm from the LCES
• Pick T feasible points from Sm . Let these points be {x1, x2, . . . , xT}
• Evaluate L(xt) and W (xt) for each of these T points

L(xt) =
{

min
i=1,...,N

θi

(∣
∣
∣xt

1 − bi
1

∣
∣
∣ +

∣
∣
∣xt

2 − bi
2

∣
∣
∣
)}

for t = 1, . . . , T

W (xt) =
{

N∑

i=1

λi

(∣
∣
∣xt

1 − bi
1

∣
∣
∣ +

∣
∣
∣xt

2 − bi
2

∣
∣
∣
)
}

for t = 1, . . . , T

• Add these points to the LIS after a dominance check.
Add (L(xt), W (xt)) to the LIS if there does not exist another objective vector in the
LIS, (L(xh), W (xh)) such that L(xt) ≤ L(xh), W (xt) ≥ W (xh) and (L(xt), W (xt)) �=
(L(xh), W (xh)).
Check whether any element of the LIS, (L(xh), W (xh)), is dominated by the newly added
objective vector, (L(xt), W (xt)). If L(xh) ≤ L(xt), W (xh) ≥ W (xt) and (L(xt), W (xt)) �=
(L(xh), W (xh)), delete (L(xh), W (xh)) from the LIS.

• Compare the LCES with the newly generated incumbent solutions. Delete Sn from the
LCES if there exists a newly generated solution such that UB(Sn) ≤ L(xt), W ∗(Sn) ≥
W (xt).

• Divide Sm into four equal subregions. Number the subregions from Sr+1 to Sr+4. Set
r = r + 4.
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• Check if the newly generated subregions, Sn(n = r + 1, . . ., r + 4), have an intersec-
tion with the feasible region, i.e., Sn ∩ S0 �= φ. If Sn ∩ S0 = φ, delete Sn from further
consideration.

• For each newly generated subregion, Sn , solve UB(Maximin-l1) with all existing demand
points and (Maximin-l1) with the demand points located inside the subregion. Choose the
smallest optimal objective function value as the U B(Sn).

• In order to find the optimal minisum objective value for newly generated subregion, Sn ,
solve (Minisum-l1) with all existing demand points.

• Compare newly generated subregions, Sn , with the LIS. Add Sn to the LCES if UB(Sn) >

L(xh) or W ∗(Sn) < W (xh) for all xh in the LIS.
• Check whether the side length of the largest subregion in LCES is less than β. If not, then

go to Step 1.2. Otherwise, stop Phase 1, let SC E S = { Sn | Sn ∈ LC E S} , LC E S = {}.
and go to Phase 2.

Step 1.2 Selecting Where to Branch Next

• Select the subregion with maximum U B(Sn) or minimum W ∗(Sn)

• Return to Step 1.1.

Phase 2: Precise cut phase: pruning with (Maximin-l1) and (Minisum-l1)

Step 2.0 Initialization

• Ask the DM to specify the stopping side length, δ (In theory, δ can take on any value;
however, we suggest using at least one sixteenth of the longer side length of the rectangle
for δ).

• Set LFDP(Sn) = {} for all n.

Step 2.1 Pruning with Optimal Values

• Calculate the smallest weighted rectilinear distances of the demand points bi /∈ Sn to
subregion Sn in the SCES. Add the demand points bi ∈ Sn as well as the demand points
whose weighted distance to Sn is smaller than U B(Sn) to the LFDP(Sn), i.e., for all n and
i , if bi ∈ Sn or θi d(bi, Sn) ≤ U B(Sn) for bi /∈ Sn then add bi to the LFDP(Sn).

• For each subregion Sn in the SCES solve (Maximin-l1) with the demand points in the
LFDP(Sn).

• Compare the ideal objective vector of subregions Sn in the SCES with the LIS. Add Sn to
the LCES if L∗(Sn) > L(xh) or W ∗(Sn) < W (xh) for all xh in the LIS.

• Check whether the side length of the largest subregion in LCES is less than δ. If not, go to
Step 2.2. Otherwise, go to Step 2.3.

Step 2.2 Further Branching

• Set SCES = {}.
• Select the subregion with maximum U B(Sn) or minimum W ∗(Sn).
• Let Sm be the selected subregion. Delete Sm from the LCES. Divide Sm into four equal

subregions. Number the subregions from Sr+1 to Sr+4. Set r = r+4.
• Check if the newly generated subregions, Sn , have an intersection with the feasible region,

Sn ∩ S0 �= φ. If Sn ∩ S0 �= φ, add Sn to the SCES.
• For each subregion Sn in the SCES solve (Minisum-l1) with all existing demand points.

Go to Step 2.1.

Step 2.3 Stopping

• Combine the remaining subregions.
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Phase 3: Interactive search

• Ask the DM which procedure she/he wants to use: exact or approximate.

A. Exact Procedure
Step 3.0 Initialization

• Set LC L P = {} and LC N V = {}.
Step 3.1 Starting the Search and Finding a Nondominated Integer Solution

• Present each region with R(Sn), Q(Sn) to the DM. Ask the DM to choose a region.
• Ask the DM to specify her/his reference point G0 = (G0

1, G0
2).• Ask the DM which objective is important, and how much. Set the initial vector of weights

accordingly w0 = (w0
1, w0

2).
• Solve ASP for the region. Let the solution be C. Check whether C is dominated by the LIS

and LCLP. If so, then delete it from further consideration.

Step 3.2 Finding Nondominated Integer Solutions

• Project C to the other regions by solving ASP with w0. Compare the projections of C with
solution C. If none of them dominates C then C is proved to be a nondominated solution
and added to the LCLP. Otherwise, delete C from further consideration.

• Compare the projections of C with LIS and LCLP. Put the nondominated ones to the LCNV.
• Ask the DM if she/he wants to continue the search from one of the solutions in LCNV. If

so, repeat this step with the selected solution. Otherwise, go to Step 3.3.

Step 3.3 Stopping the Search

• Present the LCLP to the DM. Ask her/him if she/he wants to stop searching. If so, ask the
DM to select one of the alternatives in the LCLP as the most preferred alternative and stop.
Otherwise, go to Step 3.1.

B. Approximate procedure
Step 3.0 Initialization

• Set LC L P = {}.
Step 3.1 Starting the Search.

• Present each region with R(Sn), Q(Sn) to the DM. Ask the DM to choose a region.

Step 3.2 Finding a Starting Nondominated Continuous Solution

• Ask the DM to specify her/his reference point G0 = (G0
1, G0

2).• Ask the DM which objective is important, and how much. Set the initial vector of weights
accordingly w0 = (w0

1, w0
2).

• Solve the ASPLP to find a starting continuous solution closest to the reference point. Let
the solution be z0 = (z0

1, z0
2).• If the DM likes z0 = (z0

1, z0
2), then set K = z0 and go to Step 3.4. Else, go to Step 3.3.

Step 3.3 Generating Alternative Nondominated Continuous Solutions

• Ask the DM to specify a reference direction, �d = (�d1,�d2).
• Ask the DM the number of solutions that she/he wants to see. Let this number be P .
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• Solve the ASPLP for p = 1, . . . , P . Let the solutions be z1, . . ., zP.
• Present the solutions to the DM. Ask her/him if she/he wants to change her/his reference

point. If so, return to Step 3.1. Otherwise, ask him to select one of the continuous solutions
z1, . . ., zP. Let K be the selected continuous solution. Go to Step 3.4.

Step 3.4 Finding an Integer Nondominated Solution

• Solve the ASP to find the closest integer solution to solution K. Let the solution be C =
(C1, C2).

• Check if C is dominated by one of the elements of the LIS or the LCLP. If so, delete C
from further consideration. Else, add it to the LCLP.

• Ask the DM if she/he wants to search the region under consideration further. If yes, return
to Step 3.2. Otherwise go to Step 3.5.

Step 3.5 Stopping the Search

• Present the LCLP to the DM. Ask her/him if she/he wants to stop searching. If so, ask the
DM to select one of the alternatives in the LCLP as the most preferred alternative and stop.
Otherwise, return to Step 3.1.
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